
日本ヒューレット・パッカード合同会社
2025 年 11月 14日

並列化プログラミング

Agenda

Linaro Forge

MPI

OpenMP

Intelコンパイラと最適化

並列化の基礎

TSUBAME4.0 概要

Hands On

TSUBAME4.0 概要

3

4

•諸元

TSUBAME4.0

計算ノード

CPU AMD EPYC 9654 2.4GHz * 2 socket

コア数/スレッド数 96コア/192 スレッド * 2 socket

メモリ 768GiB (DDR5-4800)

GPU NVIDIA H100 SXM5 94GB HBM2e *4

インターコネクト InfiniBand NDR200 200Gbs * 4

システム

ノード数 240

総コア数 46,080

理論演算性能(倍精度) 66.8PFLOPS

理論演算性能(半精度) 952PFLOPS

ネットワーク InfiniBand NDR200 200Gbs, ファットツリー

5

TSUBAME4.0 の構成

6

•計算ノード

TSUBAME4.0 の構成

7

• CPU: AMD EPYC 9654
(コードネーム: Genoa)
• 96 個のコア

• クロック
–ベース: 2.4GHz

–最大ブースト: 3.7GHz

• キャッシュ
–L1: 32 KB

(命令、データとも)

–L2: 1MB

–L3: 32MB (shared)

• テクノロジ
–AVX-512

TSUBAME4.0 の構成

(4TH GEN AMD EPYC PROCESSOR ARCHITECTURE
https://www.amd.com/en/products/processors/server/epyc/4th-
generation-architecture.html より)

https://www.amd.com/en/products/processors/server/epyc/4th-generation-architecture.html
https://www.amd.com/en/products/processors/server/epyc/4th-generation-architecture.html
https://www.amd.com/en/products/processors/server/epyc/4th-generation-architecture.html
https://www.amd.com/en/products/processors/server/epyc/4th-generation-architecture.html
https://www.amd.com/en/products/processors/server/epyc/4th-generation-architecture.html

並列化の基礎

8

9

•並列計算とは？
• 処理を独立化した小さな処理に細分化して、複数の処理装置で同時に実行させること。

• TSUBAME4.0 における並列性
• コア内に複数の演算器

–キーワード:
SIMD, ベクトル化、AVX512, …

• ノード内の複数の CPU,
CPU内の複数のコア
–キーワード:
共有メモリ型並列化、 OpenMP, NUMA, …

• 多数のノード
–キーワード:
分散メモリ型並列化, MPI, …

TSUBAME4.0 における並列性

ノード間ネットワーク

演
算
器

演
算
器

演
算
器

演
算
器

コア

演
算
器

演
算
器

演
算
器

演
算
器

コア

演
算
器

演
算
器

演
算
器

演
算
器

コア

CPU

演
算
器

演
算
器

演
算
器

演
算
器

コア

演
算
器

演
算
器

演
算
器

演
算
器

コア

演
算
器

演
算
器

演
算
器

演
算
器

コア

CPU

ノード

演
算
器

演
算
器

演
算
器

演
算
器

コア

演
算
器

演
算
器

演
算
器

演
算
器

コア

演
算
器

演
算
器

演
算
器

演
算
器

コア

CPU

演
算
器

演
算
器

演
算
器

演
算
器

コア

演
算
器

演
算
器

演
算
器

演
算
器

コア

演
算
器

演
算
器

演
算
器

演
算
器

コア

CPU

ノード

演
算
器

演
算
器

演
算
器

演
算
器

コア

演
算
器

演
算
器

演
算
器

演
算
器

コア

演
算
器

演
算
器

演
算
器

演
算
器

コア

CPU

演
算
器

演
算
器

演
算
器

演
算
器

コア

演
算
器

演
算
器

演
算
器

演
算
器

コア

演
算
器

演
算
器

演
算
器

演
算
器

コア

CPU

ノード

10

•メモリ構成による分類 (後述)
• 共有メモリ型

–すべての計算要素がメモリを共有している

• 分散メモリ型
–各計算要素が独自のメモリを持ち、他の計算要素のメモリを直接参照できない。

•並列プログラミングモデル
• SPMD (Single Program, Multi Data) モデル

–一つの並列プログラムしか存在せず、各処理装置に並列プログラムがコピーされ、各処理装置で同じプログラムが
実行される

• Master/Worker モデル
- MasterプログラムがWorker の生成と消去を管理

並列化

11

•台数効果
• 逐次版のプログラムを実行したときの計算時間を 𝑇𝑠, 𝑝 台使って並列計算したときの計算時間を 𝑇𝑝 と
すると、台数効果 𝑆𝑝 は次のようにあらわされます。

•並列化効率
• 𝑝 台使って計算した際の並列化効率 𝐸𝑝 [%] は、台数効果 𝑆𝑝 を使って、次のようにあらわされます。

性能評価指標

𝑆𝑝 = 𝑇𝑠/𝑇𝑝

𝐸𝑝 = 𝑆𝑝/𝑝 × 100

• あるプログラムを逐次実行した際の実行時間のうち、並列処理可能な部分の割合を𝛼 (0 ≤ 𝛼 ≤ 1) とします。このプ
ログラムを 𝑝 並列で実行した場合の台数効果 𝑆𝑝 は、並列化のオーバーヘッド等を無視できるとすると、以下の式に
従います。

𝑆𝑝 =
1

𝛼
𝑝

+ (1 − 𝛼)

12

アムダールの法則

𝑆 𝑝

𝑝

13

•たとえば全体の 90 % が並列化できるプログラム (𝛼 = 0.9) においては、台数効果 𝑆𝑝 の最大値は
10 になります。

•アムダールの法則の式より、多くのプロセッサを使用して高い並列性能を得るためには、実行時
間中の並列処理部分の割合 𝛼 を大きくする必要があります。
• 逐次実行部分を減らす

• 並列化のオーバーヘッドを減らす

アムダールの法則

14

• SIMD: Single Instruction Multiple Data
• 一つの命令を同時に複数のデータに適用する並列化。

• AVX-512
• 512 bit のレジスタを利用し、複数のデータ (倍精度ならレジスタ 1 本あたり 8 個のデータを格納可能) に対して
一括して同じ演算を行う SIMD 処理方式。

ベクトル化

15

8

23

15

8

23

7

4

11

24

16

40

19

29

48

27

2

29

6

13

19

31

21

52

0

11

11

+ +

スカラー演算 SIMD演算

ベクトル演算

15

•スレッドが基本的な要素

•すべてのスレッドがメモリを共有:
どのスレッドも等しくメモリにアクセスできる

共有メモリ型並列化

メモリ

スレッド スレッド スレッド スレッド

スレッド:
プロセスの中で実行されるひとまとまり
の命令。プロセスの中に一つ、もしくは
複数存在する。OpenMP での実行単位。
他のスレッドとメモリを共有する

16

•プロセスが基本的な要素

•他のプロセスのメモリに直接アクセスできない

•明示的なメッセージの受け渡しが必要

分散メモリ型並列化

ネットワーク

プロセス

メモリ

プロセス

メモリ

プロセス

メモリ

プロセス

メモリ

プロセス:
動作中のプログラム。 OS から記憶領
域等の資源を割り当てられている。
MPI における並列化の単位。内部に一
つもしくは複数のスレッドを持つ。

Intel コンパイラと最適化

17

18

• Intelコンパイラ

• Intel MPI

Intel コンパイラの使い方: 環境設定

$ module load intel

$ module load intel-mpi

19

•シリアル

• OpenMP

• MPI

• OpenMP-MPI ハイブリッド

Intel コンパイラの使い方 (C)

$ icx [options] <source>

$ icx –qopenmp [options] <source>

$ mpiicx [options] <source>

$ mpiicx –qopenmp [options] <source>

20

•シリアル

• OpenMP

• MPI

• OpenMP-MPI ハイブリッド

Intel コンパイラの使い方 (C ++)

$ icpx [options] <source>

$ icpx –qopenmp [options] <source>

$ mpiicpx [options] <source>

$ mpiicpx –qopenmp [options] <source>

21

•シリアル

• OpenMP

• MPI

• OpenMP-MPI ハイブリッド

Intel コンパイラの使い方 (Fortran)

$ ifx [options] <source>

$ ifx –qopenmp [options] <source>

$ mpiifx [options] <source>

$ mpiifx –qopenmp [options] <source>

22

一般的な最適化オプション

オプション 内容

-O -O2 と同じ

-O0 すべての最適化を無効にします

-O1 コードサイズを増やさないような最適化を行います

-O2 ベクトル化を含む最適化を有効にします。一般的に推奨され
る最適化レベルです。 -O[n] オプションを指定しない場合の
デフォルトです。

-O3 -O2 よりも積極的に最適化を行います。ループを用いて多く

の浮動小数点演算を行ったり大量のデータを扱ったりするア
プリケーションに効果的に働きます。

-Ofast -O3 のほかに最適化に資するオプションを設定し、高速化を図
ります。 (gcc との互換性のために用意されている)

23

プロセッサ固有の最適化オプション

オプション 内容

-x<code> <code> で指定した命令セットをサポートする専用コードを生成
します。このオプションを設定した場合、生成されたバイナリは、
下位の命令セットしかサポートしないプロセッサ上では実行で
きません。

-ax<code> <code> で指定された命令セットをサポートするプロセッサ向け
に、代替コードを生成します。このオプションを設定した場合、
生成されたバイナリを下位の命令セットしかサポートしないプ
ロセッサ上で実行すると、汎用コードでの実行になります。

-xHost コンパイルを実行しているシステムでサポートされる最上位の
命令セットを選択します。TSUBAME4.0 ではログインノードと計
算ノードの CPU が異なりますので注意してください。

24

TSUBAME4.0 で推奨される最適化オプション

オプション 内容

-O3 ベクトル化などの最適化に加え、ループの融合、アンロール、
IF 文への対応をはじめとする強力なループ変換など、積極的
なベクトル化を行います。

-xCORE-AVX512 TSUBAME4.0 の CPU, AMD EPYC9654 は Intel AVX-512 命令を
サポートしています。このオプションにより、 AVX-512 命令セッ
ト対応のプロセッサ向けの最適化が行われます。

25

プロシージャ間最適化オプション

オプション 内容

-ipo 複数のソースファイルにまたがるインライン展開や、その他の
プロシージャ間の最適化を行います。コンパイル中のコードに
対してより多くの情報が得られるため、追加の最適化が可能
です。条件により、コンパイル時間やコードサイズが大幅に増
えることがあります。

26

浮動小数点数値演算の制御

オプション 内容

-fp-model=fast 計算結果に影響がある最適化を許可します。

-fp-model=precise 計算結果に影響しない最適化のみ許可します。

-fp-model=strict 最も厳密な浮動小数点モデルを採用します。厳密な浮動小数
点例外セマンティクスを有効にします。

27

• 2GBバイトを超えるようなグローバルメモリ、スタティックメモリを使うプログラムは、
-mcmodel=medium や –mcmodel=large を指定してビルドしてください。

• -mcmodel=small もしくは -mcmodel=large を指定した場合、 --shared-intel オプションも自動的に指定されます。

メモリモデル

オプション 内容

-mcmodel=small コードとデータがアドレス空間の最初の 2 GB に収まることをコ
ンパイラに指示します。 (デフォルト)

-mcmodel=medium コードがアドレス空間の最初の 2 GB に収まることをコンパイラ
に指示します。データにはこのようなメモリに関する制限を課
しません。

-mcmodel=large コード、データに関して、 small やmedium にあったようなメモリ
に関する制限を課しません。

28

•デバッグ情報オプション

•最適化レポートオプション

デバッグ情報、最適化レポートオプション

オプション 内容

-g デバッグ情報の生成を行います。このオプションが指定された
場合、他に指定がなければ –O0 オプションが設定されます。

オプション 内容

-qopt-report[=<N>] 最適化レポートを作成します。デフォルトでは、レポートは
optrpt 拡張子を持つファイルに出力されます。レポートのレ
ベル <N> を指定することもできます。0 (レポート無し) から
3 (最も詳細なレポート)を選択できます。

-qopt-report-file=<keyword> 最適化レポートの出力先を制御します。 <keyword> には出
力先のファイルパスを指定するか、 stdout (標準出力への
出力), stderr (標準エラー出力の出力) を指定します。

29

最適化レポート例
$ icx -O2 -qopt-report=2 -qopt-report-file=stdout \
 ./matmul.c

Global optimization report for : matmul

...<略>

LOOP BEGIN at ./matmul.c (18, 3)

 remark #15553: loop was not vectorized: outer loop is not an auto-
vectorization candidate.

 LOOP BEGIN at ./matmul.c (19, 5)

 remark #15553: loop was not vectorized: outer loop is not an
auto-vectorization candidate.

 LOOP BEGIN at ./matmul.c (20, 7)

 remark #15335: loop was not vectorized: vectorization
possible but seems inefficient. Use vector always directive or -vec-
threshold0 to override

 remark #25438: Loop unrolled without remainder by 8

 LOOP END

 LOOP END

LOOP END

$ cat -n matmul.c

...

 17

 18 for(i=0; i<SIZE; i++) {

 19 for (j = 0; j < SIZE; j++){

 20 for (k = 0; k < SIZE; k++) {

 21 c[i][j] = c[i][j] + a[i][k] * b[k][j];

 22 }

 23 }

 24 }

...

• Intel Compiler とのオプションの対応•環境設定

• C

• C++

• Fortran

補足: AMD Optimizing C/C++ and Fortran Compilers (AOCC)

30

Intel Compiler AMD Compiler

最適化オプション -O<n> -O<n>

積極的な最適化を行う
コンパイラオプション

-Ofast -Ofast

TSUBAME4.0
アーキテクチャでの
最適化オプション

-axCORE-AVX512 -march=znver4

デバッグ情報
オプション

-g -g

プロシージャ間最適化 -ipo -flto (リンク時最適化)

OpenMP -qopenmp -fopenmp (C/C++)
-mp (Fortran)

$ module load aocc

$ clang [options] <source>

$ clang-cpp [options] <source>

$ flang [options] <source>

AMD EPYC 9xx4-series Processors Compiler Options Quick Reference Guide

https://www.amd.com/content/dam/amd/en/documents/developer/version-4-2-documents/aocc/aocc-4.2-quick-reference-guide.pdf

31

• Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference: Compiler Options
https://www.intel.com/content/www/us/en/docs/dpcpp-cpp-compiler/developer-guide-reference/2024-
1/compiler-options.html

• Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference: Compiler
Options
https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-guide-reference/2024-
0/compiler-options-001.html

• AMD Optimizing C/C++ and Fortran Compilers (AOCC)
https://www.amd.com/en/developer/aocc.html

• AMD EPYC 9xx4-series Processors Compiler Options Quick Reference Guide
https://www.amd.com/content/dam/amd/en/documents/developer/version-4-2-documents/aocc/aocc-
4.2-quick-reference-guide.pdf

参考資料

https://www.intel.com/content/www/us/en/docs/dpcpp-cpp-compiler/developer-guide-reference/2024-1/compiler-options.html
https://www.intel.com/content/www/us/en/docs/dpcpp-cpp-compiler/developer-guide-reference/2024-1/compiler-options.html
https://www.intel.com/content/www/us/en/docs/dpcpp-cpp-compiler/developer-guide-reference/2024-1/compiler-options.html
https://www.intel.com/content/www/us/en/docs/dpcpp-cpp-compiler/developer-guide-reference/2024-1/compiler-options.html
https://www.intel.com/content/www/us/en/docs/dpcpp-cpp-compiler/developer-guide-reference/2024-1/compiler-options.html
https://www.intel.com/content/www/us/en/docs/dpcpp-cpp-compiler/developer-guide-reference/2024-1/compiler-options.html
https://www.intel.com/content/www/us/en/docs/dpcpp-cpp-compiler/developer-guide-reference/2024-1/compiler-options.html
https://www.intel.com/content/www/us/en/docs/dpcpp-cpp-compiler/developer-guide-reference/2024-1/compiler-options.html
https://www.intel.com/content/www/us/en/docs/dpcpp-cpp-compiler/developer-guide-reference/2024-1/compiler-options.html
https://www.intel.com/content/www/us/en/docs/dpcpp-cpp-compiler/developer-guide-reference/2024-1/compiler-options.html
https://www.intel.com/content/www/us/en/docs/dpcpp-cpp-compiler/developer-guide-reference/2024-1/compiler-options.html
https://www.intel.com/content/www/us/en/docs/dpcpp-cpp-compiler/developer-guide-reference/2024-1/compiler-options.html
https://www.intel.com/content/www/us/en/docs/dpcpp-cpp-compiler/developer-guide-reference/2024-1/compiler-options.html
https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-guide-reference/2024-0/compiler-options-001.html
https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-guide-reference/2024-0/compiler-options-001.html
https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-guide-reference/2024-0/compiler-options-001.html
https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-guide-reference/2024-0/compiler-options-001.html
https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-guide-reference/2024-0/compiler-options-001.html
https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-guide-reference/2024-0/compiler-options-001.html
https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-guide-reference/2024-0/compiler-options-001.html
https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-guide-reference/2024-0/compiler-options-001.html
https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-guide-reference/2024-0/compiler-options-001.html
https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-guide-reference/2024-0/compiler-options-001.html
https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-guide-reference/2024-0/compiler-options-001.html
https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-guide-reference/2024-0/compiler-options-001.html
https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-guide-reference/2024-0/compiler-options-001.html

OpenMP

32

33

• OpenMP とは、共有メモリ型並列計算機でマルチスレッド型の並列計算プログラムを作るために
作られた API (Application Programming Interface)です。

OpenMPとは

メモリ

スレッド スレッド スレッド スレッド

34

• OpenMPのコンポーネント
• 指示文 (C 言語では #pragma omp, Fortran では !$omp で始まる行)

• ライブラリ

• 環境変数

•特徴
• ソースコード内に指示行を記述することで並列化します。

• 分散メモリ型の並列化に比べ、実装が容易、逐次的な実装が可能です。

• 共有メモリ型なので、ノード間の並列化には使えません。

• C/C++, Fortran で利用可能です。

• Fork-join モデル
–Parallel 構文で囲まれた場所のみが複数スレッドで並列実行され、それ以外は一つのスレッドで実行されます。

OpenMPとは

C/C++

Fortran

Fork-join model

35

<block 1>

#pragma omp parallel

{

 <block 2>

}

<block 3>

<block 1>

!$omp parallel

 <block 2>

!$omp end parallel

<block 3>

マスター

スレッド 0

マスター

スレッド 1 スレッド 2

<block 1>

<block 2>

<block 3>

並列領域

並列領域

•実行
• 環境変数 OMP_NUM_THREADS

•環境設定

•ビルド
• C 言語

• C++

• Fortran

OpenMP のビルドと実行

36

module load intel

icx -qopenmp <source code>

icpx -qopenmp <source code>

ifx -qopenmp <source code>

オプション –qopenmp を与えると、
OpenMP の指示文を解釈して並列化さ
れたコードを生成します。
-qopenmp が与えられない場合、
OpenMP の指示文は無視されます。

OMP_NUM_THREADS=<並列数>

OMP_NUM_THREADS が指定されない場合、
intel コンパイラでコンパイルされたバイナリ
は利用可能なすべてのコアを利用します。

Hello World

37

#include<stdio.h>

int main(){

 #pragma omp parallel

 {

 printf("Hello, World!\n");

 }

}

マスター

Hello, World!

マスター

Hello, World! Hello, World!

<block 1>

<block 2>

<block 3>

$ module load intel

$ icx -qopenmp openmp.c

$ export OMP_NUM_THREADS=4

$./a.out

Hello, World!

Hello, World!

Hello, World!

Hello, World!

$

• OpenMP では並列化の指示を指示文で与えま
す。

•指示文は、 C/C++ では #pragma omp で、
Fortran では !$omp で始まります。

•ディレクティブ名と、それを修飾する節で記述
されます。

•コンパイラが OpenMP に対応していない場合
(もしくは OpenMP の機能を有効にしていない
場合), 指示文は無視されます。

• C/C++

• Fortran

OpenMP 指示文の書式

38

#pragma omp <ディレクティブ名> [節[, 節…]]

!$omp <ディレクティブ名> [節[, 節…]]

•続くブロックが並列領域であることを指示する
ディレクティブです

•並列領域を実行する OpenMP スレッドを作り
ます。

Parallel 指示文

39

#pragma omp parallel [節[, 節…]]

{

 <並列領域>

}

!$omp parallel [節[, 節…]]

 <並列領域>

!$omp end parallel

•並列領域で使用します。

•後続する for ループ/do ループを各スレッドで
分担処理します。

•デフォルトでは、各スレッドが等しく処理を分
担します。

例

for/do 指示文

40

#pragma omp do [clause[, clause..]]

for(i=0;i<N;i++){

 <block>

}

$!omp do [clause[, clause..]]

do i=0, n

 <block>

enddo

$!omp end do

double a[100], b[100], c[100];

…

#pragma omp parallel for

 for (i=0; i<100; i++){

 a[i] = b[i] + c[i];

 }

スレッド index

0 0 - 24

1 25 - 49

2 50 - 74

3 75 – 99

41

•主な節

for/do 指示文のオプション (節)

節 内容

private(list) listの変数をスレッドにプライベートな変数にします。

shared(list) list の変数を各スレッドから共有される変数にします。

schedule(kind, chunk) kind で指定された方法でループをスレッドに割り当てます。
kind には static, dynamic, guided などが指定可能です。

reduction(operator, var) var で指定された変数を operator で縮約演算します。

nowait ループの最後での同期を行いません。

• OpenMP は共有メモリ型:
基本的に変数は shared 変数(すべてのスレッド
から等しくアクセスされる変数) です。ループ内
に現れる変数も、for/do 指示文の直後のループ
変数は例外として、shared 変数になります。

• そこで、必要な変数を private 変数 (スレッドごと
に独立して確保される変数) にする宣言が必要
になります。

• OpenMP では、private 変数を private 節により宣
言することが可能です。

for/do 指示文: データスコープ

42

#pragma omp do private(j, factor)

for(i=0;i<N;i++){

 factor=b[i]

 for(j=0;j<N;i++){

 a[j] += factor * c[j]

 }

}
private(<変数名>[, <変数名>]…)

43

•そのほかのデータスコープ節

for/do 指示文: データスコープ

節 内容

firstprivate 並列領域開始時にマスタースレッドの値を全スレッドにコピーします。

lastprivate 並列領域終了時のマスタースレッドの値を並列実行時の最後の値としま
す。

copyprivate single 指示文で指定された範囲を実行後、値を全スレッドにコピーします。

default 指示文や節で属性が指定されていない変数のデフォルトの属性を指定し
ます。

•右は配列 a の総和を計算するループで
す。

•スレッドに分割すると、それぞれのスレッ
ドが s の値を書き換えるので、正しい値
が計算されません。

•s のデータスコープを private や
lastprivate にしても、問題は解決されま
せん。

for/do 指示文: reduction

44

s=0

for(i=0;i<100;i++){

 s+=a[i]

}

s=0

for(i=0;i<50;i++){

 s+=a[i]

}

s=0

for(i=50;i<100;i++){

 s+=a[i]

}

逐次

スレッド 0 スレッド 1

• Reduction 節を追加することにより、総和
計算が可能になります。

• 並列計算中、各スレッドは一時的な
private 属性の変数に計算結果を集約し
ます。

• 並列計算終了後、指定された演算で値
を集約して格納します。

• 計算順序が逐次プログラムと異なります。
その結果、丸め誤差の影響で計算結果
が逐次版と異なることがあります。

for/do 指示文: reduction

45

s=0

#pragma omp for reduction (+: s)

for(i=0;i<100;i++){

 s+=a[i]

}

reduction(演算子, 変数名)

s=0

for(i=0;i<50;i++){

 s+=a[i]

}

s=0

for(i=50;i<100;i++){

 s+=a[i]

}

s = s(スレッド0) + s(スレッド1)

スレッド 0 スレッド 1

s(スレッド0) s(スレッド1)

• •逐次処理

• OpenMP reduction 節

• reduction 節省略時

for/do 指示文: reduction

46

#include<stdio.h>

int main(){

 double

 a[12]={3.,8.,12.,5.,6.,4.,9.,11.,2.,7.,10.,1.};

 double s;

 int i;

 s=0.;

#pragma omp parallel

 {

#pragma omp for reduction(+: s)

 for (i=0;i<12;i++){

 s+=a[i];

 }

 }

 printf("s= %lf\n",s);

 return 0;

}

$ icx reduction.c

$./a.out

s= 78.000000

$ icx -qopenmp reduction.c

$ export OMP_NUM_THREADS=4

$./a.out

s= 78.000000

$ icx -qopenmp reduction.c

$ export OMP_NUM_THREADS=4

$./a.out

s= 33.000000

47

•スケジューリング節を追加することにより、スレッドへの処理の割り当てを
変えることができます。

• kind で割り当て方法を指定します。主なものは下記のとおりです。

for/do 指示文: スケジューリング

schedule(kind, chunksize)

kind 内容

static ループを chunksizeのチャンクに分割し、スレッド番号順で各スレッドに割
り付けます。

dynamic 各スレッドは chunksize の数だけループを実行し、実行が終わったら次の
チャンクを要求します。

•下記の場合は、スレッドにより処理量が大きく
異なります。

•デフォルトでは、ループは等分割されます。

for/do 指示文: スケジューリング

48

#pragma omp do

for(i=0;i<8;i++){

 t=a[i]

 for(j=i;j<8;j++){

 c[i][j] = c[i][j] / t

 }

}

#pragma omp do

for(i=0;i<8;i++){

 factor=b[i]

 for(j=0;j<8;j++){

 a[j] += factor * c[j]

 }

}

i=0 1 2 3

5 6 74

i=0 1 2 3

5 6 74

Private 節を省略しています

•スケジューリングに dynamicを使用すると、さ
らに緩和することができます。

• shedule 指示節を使い、 chunk サイズを減らすこ
とにより、ロードインバランスを緩和することがで
きます。

for/do 指示文: スケジューリング

49

#pragma omp do schedule(dynamic, 1)

for(i=0;i<8;i++){

 t=a[i]

 for(j=i;j<8;j++){

 c[i][j] = c[i][j] / t

 }

}

#pragma omp do schedule(static, 1)

for(i=0;i<8;i++){

 t=a[i]

 for(j=i;j<8;j++){

 c[i][j] = c[i][j] / t

 }

}

i=0

1 2

3

5

4
dynamic スケジューリングに
より処理量をより均等に割り
当てることが可能ですが、
割り当て処理には static より
時間がかかります。

Private 節を省略しています

7i=0

1

2

3 5

64

7 6

50

•スレッドの制御にかかわる指示文

そのほかの主な指示文

指示文 内容

single 指定した範囲を一つのスレッドで実行します。

master 指定した範囲をmaster スレッドで実行します。

barrier 全スレッドの処理が終わるまで待ちます

critical 指定した範囲を同時に実行するスレッドを1 つに制限します。

atomic 直後の代入文について、複数のスレッドが安全に共有変数を更新できる
ようにします。

51

OpenMP の主な環境変数

環境変数 意味

OMP_NUM_THREADS 並列領域でのスレッド数を指定します。

OMP_STACKSIZE OpenMP の各スレッドが使うスタックサイズを設定します。
単位を B, K, M, G, T で指定できます。単位が指定されない場合、 K
(Kilobytes) になります。
デフォルト: 4M
推奨: 16M

OpenMP を使うプログラムで
segmentation fault が発生した場合、
OMP_STACKSIZE を増やすことで問題が
解消されることがあります。

52

•ライブラリルーチンを使う場合は、下記のような include文/use 文が必要です
• C/C++

• Fortran

OpenMPの主なランタイム・ライブラリルーチン

ルーチン 意味

omp_set_num_threads スレッド数を設定します。呼び出し後の parallel 領域で適用されるス
レッド数に影響します。

omp_get_num_threads 現在のチームのスレッド数を取得します。

omp_get_thread_num 自身のスレッド番号を取得します。

omp_get_num_procs デバイスで利用可能なプロセッサ数を取得します。

use omp_lib

#include<omp.h>

53

•ループ長が確定していないループ
• C の while ループ、 Fortran の do while ループなど

•ループ途中でのループ終了命令

•ループ内の依存性
• 後方依存性

• 前方依存性

• 間接参照のあるループ

•関連: 縮約演算
• ループ内に依存性があるが、並列化できるループ

並列化できないループ

54

• i=50 の計算時、 a[49] が必要であり、スレッド 1 の計算が終わるまで待たないと正しい計算結果
が得られません。

後方依存性

for(i=0;i<100;i++){

 a[i] = a[i-1] + b[i]

}

for(i=0;i<50;i++){

 a[i] = a[i-1] + b[i]

}

for(i=50;i<100;i++){

 a[i] = a[i-1] + b[i]

}

55

• i=49 の計算時、値が更新される前の a[50] が必要であるため、スレッド 1 で a[50]がすでに更新さ
れている場合には値が不正になります。

•一時的にデータを格納する配列を作り、 a を一旦その配列に格納することで、依存性が回避でき
る場合があります。

前方依存性

for(i=0;i<100;i++){

 a[i] = a[i+1] + b[i]

}

for(i=0;i<50;i++){

 a[i] = a[i+1] + b[i]

}

for(i=50;i<100;i++){

 a[i] = a[i+1] + b[i]

}

56

•配列 a を添え字配列 Index で参照しています。 Index[i] に重複する値があれば、並列化した場合
に逐次の場合と結果が変わる可能性があります。

• Index[i] に重複がないことが保証されていれば、並列化が可能です。

間接参照のあるループ

for(i=0;i<100;i++){

 a[index[i]] = b[i]+c[i]

}

57

• i step の s を計算するためには i-1 ステップの s の値が求まっている必要があるので並列化は不
可能に思えます。しかし、 for指示文の reduction 節の説明で見た通り、実際は並列化が可能で
す。

縮約演算

s=0

for(i=0;i<100;i++){

 s += a[i]

}

58

•片桐 孝洋 「並列プログラミング入門: サンプルプログラムで学ぶ OpenMP と OpenACC」
東京大学出版会, 2015

• OpenMP: The OpenMP API specification for parallel programing
https://www.openmp.org/
• OpenMP Reference Guides

https://www.openmp.org/resources/refguides/

参考資料

https://www.openmp.org/

MPI

59

60

• Message Passing Interface(MPI)とは、メッセージ・パッシングのライブラリの規格の一つです。

•特徴
• 分散メモリ型の並列化を行います。

• ライブラリ関数を用い、明示的にメッセージ・パッシングを行うことで、並列化を行います。

• ノード間の並列化にも、ノード内の並列化にも使えます。

• SPMD (Single Program Multiple Data) モデル
–一つの共通のプログラムが、並列処理開始時にすべてのプロセッサ上で起動します。

–MPMD （Multi Program Multiple Data）も可能です。

• C/C++, Fortran から利用可能です。そのほかのプログラミング言語でも、モジュール/パッケージ/ライブラ
リが用意されていて、MPI が利用できる場合があります。 (例: Python における mpi4py)

• 数百の関数が定義されています。 (ですが、最初は数種類覚えれば十分です)

MPI とは

• MPI の実行

•環境設定

• C 言語

• C++

• Fortran

MPI のビルド

61

mpiicx <source file>

mpiicpx <source file>

mpiifx <source file>

Intel のモジュールファイルに加えて、
intel-mpi もロードしてください

module load intel

module load intel-mpi

mpiexec.hydra –np <プロセス数> ./a.out

•実行例•ソースファイル

Hello World

62

#include<stdio.h>

#include<mpi.h>

int main(int argc, char **argv) {

 int myrank;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

 printf("Hello, from rank %d\n", myrank);

 MPI_Finalize();

}

$ mpiicx ./hello.c

$ mpiexec.hydra -np 4 ./a.out

Hello, from rank 1

Hello, from rank 0

Hello, from rank 2

Hello, from rank 3

•コミュニケータ
• プロセスのグループ

• MPI_COMM_WORLD : 全プロセスを含むコミュニ
ケータ。 MPI の初期化時に定義され、常に利用
が可能です。

• プログラム内でも必要に応じて定義可能です。

•ランク
• コミュニケータ内でのプロセスの識別番号。 0 か
ら始まる整数

MPI の用語

63

MPI_COMM_WORLD

Rank 2

SUB_COMM

Rank 0
(SUB_COMM)

Rank 0

Rank 1

Rank 3

Rank 1
(SUB_COMM)

ランクとコミュニケータの組み合わせ
でプロセスを指定することができます。

64

•システム関数
• MPI を利用するために必要な、初期化、終了処理などの関数です。

• 1 対 1 通信関数
• あるプロセスからあるプロセスへデータを移動するための関数です。MPI の通信の基本は 1 対 1 通信で、
高度な通信関数も 1 対 1 通信関数を用いることで実装できます。

• ブロッキング通信、ノンブロッキング通信に分けられます。

•集団通信
• あるグループに属する全プロセスがかかわる通信のための関数です。一つのプロセスから全プロセスへ
データを送るMPI_BCAST や、全プロセスのデータを一つのプロセスに集めるMPI_GATHER, 全プロセスの
データを加算するなどの処理を行うMPI_REDUCE などがあります。

MPI の関数

65

• MPI_INIT
• MPI を初期化します。

• コミュニケータMPI_COMM_WORLD が
定義されます。

• MPI_FINALIZE
• MPI を終了します。

MPI関数: システム関数

int MPI_Init(int *argc,char ***argv)

MPI_INIT(IERROR)

INTEGER IERROR

int MPI_Finalize(void)

MPI_FINALIZE(IERROR)

INTEGER IERROR

66

• MPI_COMM_RANK(comm, rank)
–comm: コミュニケータ

–rank: comm 内のランク

• コミュニケータ内での自身の
ランクを取得します。

• MPI_COMM_SIZE(comm, size)
–comm: コミュニケータ

–size: コミュニケータ内のプロセス数

• コミュニケータに含まれる
プロセス数を取得します。

MPI関数: システム関数

MPI_COMM_RANK(COMM, RANK, IERROR)
INTEGER COMM, RANK, IERROR

int MPI_Comm_rank(MPI_Comm comm, int *rank)

int MPI_Comm_size(MPI_Comm comm, int *size)

MPI_COMM_SIZE(COMM, SIZE, IERROR)
INTEGER COMM, SIZE, IERROR

67

1 対 1 通信
MPI_COMM_WORLD

buf

Rank 0

Rank 2

buf

MPI_Send

MPI_Recv

どのデータを送るのか? -> BUF

どこにデータを格納するか? -> BUF

データを何個送るのか？ -> COUNT

データ型は? -> DATATYPE

宛先は?/発信元は?

 -> DEST/SOURCE, COMM

識別のための情報 -> TAG

68

• MPI_SEND(buf, count, datatype, dest, tag, comm)
MPI_RECV(buf, count, datatype, source, tag, comm)

–buf: データの先頭アドレス

–count: データの個数

–datatype: データ型

–dest:送り先の rank

–source: 送信元の rank

– tag: タグ。送信と受信で
一致させる

–comm: コミュニケータ

MPI関数: 1対 1 通信関数

MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM,
IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

int MPI_Send(const void *buf, int count,
MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

int MPI_Recv(void *buf, int count,
MPI_Datatype datatype, int source, int tag,
MPI_Comm comm, MPI_Status *status)

MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG,
COMM, STATUS, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, &
 STATUS(MPI_STATUS_SIZE), IERROR

69

MPI関数: 1対 1 通信関数 プログラム例

#include<stdio.h>
#include"mpi.h"

int main(int argc, char **argv){
 int size, rank, buf, tag, root, src, i_src;
 MPI_Status status;

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 root=0;
 tag=1;
 if(rank == 0) {
 for(src=1; src<size; src++) {
 MPI_Recv(&buf, 1, MPI_INT, src, tag, MPI_COMM_WORLD, &status);
 printf("Hello from %d\n", buf);
 }
 } else {
 buf=rank;
 MPI_Send(&buf, 1, MPI_INT, root, tag, MPI_COMM_WORLD);
 }
 MPI_Finalize();
}

$ mpiexec.hydra -np 4 ./a.out
Hello from rank 1
Hello from rank 2
Hello from rank 3

•ノンブロッキング通信•ブロッキング通信

ブロッキング通信とノンブロッキング通信

70

MPI_SEND MPI_RECV

MPI_ISEND MPI_IRECV

MPI_WAIT MPI_WAIT

処理 処理

処理 処理

処理 処理

処理 処理

ブロッキング通信
では、通信が終了
するまで他の処理
を行うことはできま
せん。

ノンブロッキング通
信では、関数の呼
び出しからすぐに
処理が戻り、通信
中も他の処理を実
行することができ
ます。MPI_WAIT で
通信が終了するの
を待ち、その後は
通信が終了したこ
とが保証されます。

処理 処理

71

• MPI_ISEND(buf,count,datatype, dest, tag, comm, request)
MPI_IRECV(buf,count,datatype, source, tag, comm, request)

–buf: データの先頭アドレス

–count: データの個数

–datatype: データ型

–dest/source送り先/送信元の rank

– tag: タグ。送信と受信で一致させる

–comm: コミュニケータ

–request: 送信/受信命令につけられた識別子

ブロッキング通信とノンブロッキング通信

MPI_IRECV(BUF, COUNT, DATATYPE, SOURCE, TAG, &
 COMM, REQUEST, IERROR)
 <type> BUF(*)
 INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, &
 REQUEST, IERROR

int MPI_Irecv(void *buf, int count,
MPI_Datatype datatype, int source,

 int tag,MPI_Comm comm, MPI_Request *request)

MPI_ISEND(BUF, COUNT, DATATYPE, DEST, TAG, &
 COMM, REQUEST, IERROR)
 <type> BUF(*)
 INTEGER COUNT, DATATYPE, DEST, TAG, COMM, &
 REQUEST, IERROR

int MPI_Isend(const void *buf, int count,
 MPI_Datatype datatype, int dest,
 int tag, MPI_Comm comm, MPI_Request *request)

72

• MPI_WAIT(request, status)
–request:送信/受信命令につけられた識別子

–status: 完了した通信についての情報

• 非同期通信の完了を待ちます

• MPI_WAITALL(cout, request_array, status)
–count: 待つリクエストの個数

–request_array:
送信/受信命令につけられた識別子の配列

–status: 完了した通信についての情報の配列

• request_array で与えられたすべての
非同期通信の完了を待ちます

ブロッキング通信とノンブロッキング通信

MPI_WAIT(REQUEST, STATUS, IERROR)
 INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR

int MPI_Wait(
MPI_Request *request, MPI_Status *status)

MPI_WAITALL(COUNT, ARRAY_OF_REQUESTS,
ARRAY_OF_STATUSES, IERROR)

INTEGER COUNT, ARRAY_OF_REQUESTS(*), &
 ARRAY_OF_STATUSES(MPI_STATUS_SIZE, *), &
 IERROR

int MPI_Waitall(int count,
MPI_Request array_of_requests[],

 MPI_Status array_of_statuses[])

73

ノンブロッキング通信

for(i=0; i<N; i++){
 a[i]=... // a[] を使った処理
 }

 for(dest=0; dest<N_dest; dest++) {
 MPI_Isend(a データの送信)
 }
 for(src=0; src<N_src; src++) {
 MPI_Irecv(a データの受信)
 }

 for(i=0; i<N; i++){
 b[i]=... //通信の終了を待つ必要のない処理
 }

 MPI_Waitall(すべてのノンブロッキング通信)

 for(i=0; i<N; i++){
 a[i]=... // 受信したデータを使う処理
 }
}

74

• MPI_BCAST
• 全プロセスにコピー

• MPI_SCATTER
• 全プロセスに分散

• MPI_GATHER
• 全プロセスから収集

• MPI_REDUCE
• 全プロセスの値を集約

MPI 関数: 集団通信

2

2 6 3

2 2

2 6 3

11 2 6 3

2 6 3 2 6 3

+2 +6 +3

75

• MPI_REDUCE(sendbuf, recvbuf, count, datatype, op, root, comm)
–sendbuf: 送信バッファのアドレス

–recvbuf: 受信バッファのアドレス

–count: データの個数

–datatype: データ型

–op: 演算の種類

–root: 結果を受け取るプロセス

–comm: コミュニケータ

• コミュニケータ内の全プロセスからデータを受け取り、
op に与えられる演算に従って集計した結果を root の
sendbuf に格納します。

• コミュニケータ内のすべてのプロセスが同じ関数を呼ぶ必要があります。

集団通信例: MPI_Reduce

op 内容

MPI_MAX 最大値

MPI_MIN 最小値

MPI_SUM 合計

MPI_PROD 積

MPI_LAND 論理積

MPI_LOR 論理和

主な op の値

•実行例•プログラム例

MPI_REDUCE

76

#include<stdio.h>
#include "mpi.h"

int main(int argc, char **argv){
 double a[12]={3.,8.,12.,5.,6.,4.,9.,11.,2.,7.,10.,1.};
 double s, result;
 int i, myrank;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
 s=0.;
 for (i=myrank*3; i<(myrank+1)*3; i++){
 s+=a[i];
 }
 MPI_Reduce(&s, &result, 1, MPI_DOUBLE,
 MPI_SUM, 0, MPI_COMM_WORLD);
 if (myrank == 0) printf("result= %lf\n",result);
 MPI_Finalize();
 return 0;
}

$ mpiicx ./reduction_mpi.c
$ mpiexec.hydra -np 4 ./a.out
result= 78.000000

77

• MPI, OpenMP の組み合わせ
• MPI: ノード間、ノード内いずれの並列化にも利用可能

• OpenMP: ノード内の並列化にのみ対応

•並列化の方針
• フラットMPI:

–ノード内、ノード間いずれの並列化もMPI で記述

• ハイブリッドMPI/OpenMP:
–ノード間はMPI で記述、ノード内は OpenMP, もしくは OpenMP とMPI の組み合わせで記述

ハイブリッドMPI/OpenMP 並列化

MPI プロセス数 OpenMP スレッド数

フラット 16 -

ハイブリッド 8 2 各ノードに 2 MPI プロセス

4 4 ノード内は OpenMP, ノード間はMPI

例: 4 ノード、各ノード 4 コアのシステム

78

ハイブリッドMPI/OpenMP 並列化 プログラム例

#include<stdio.h>
#include<mpi.h>
#include<omp.h>

int main(int argc, char **argv){
 int rank, nprocs;
 int threadid, nthreads;
 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD,&rank);
 MPI_Comm_size(MPI_COMM_WORLD,&nprocs);
 nthreads=omp_get_num_threads();
#pragma omp parallel private(threadid)
 {
 threadid=omp_get_thread_num();
 printf("Hello thread %d of rank %d\n",threadid,rank);
 }

 MPI_Finalize();

}

$ mpiicx –qopenmp ./hybrid.c
$ qrsh <qrsh のオプション>
$ export OMP_NUM_THREADS=2
$ mpiexec.hydra -np 2 ./a.out |sort
Hello thread 0 of rank 0
Hello thread 0 of rank 1
Hello thread 1 of rank 0
Hello thread 1 of rank 1

79

•片桐 孝洋 「スパコンプログラミング入門: 並列処理とMPI の学習」
東京大学出版会, 2013

• Peter S. Pacheco 著, 秋葉博訳 「MPI 並列プログラミング」
培風館, 2001

• Message Passing Interface Forum, https://www.mpi-forum.org/

• Intel® MPI Library Developer Guide for Linux* OS
https://www.intel.com/content/www/us/en/docs/mpi-library/developer-guide-linux/2021-
11/overview.html

• Intel® MPI Library Developer Reference for Linux* OS
https://www.intel.com/content/www/us/en/docs/mpi-library/developer-reference-linux/2021-
11/overview.html

参考資料

https://www.mpi-forum.org/
https://www.mpi-forum.org/
https://www.mpi-forum.org/
https://www.intel.com/content/www/us/en/docs/mpi-library/developer-guide-linux/2021-11/overview.html
https://www.intel.com/content/www/us/en/docs/mpi-library/developer-guide-linux/2021-11/overview.html
https://www.intel.com/content/www/us/en/docs/mpi-library/developer-guide-linux/2021-11/overview.html
https://www.intel.com/content/www/us/en/docs/mpi-library/developer-guide-linux/2021-11/overview.html
https://www.intel.com/content/www/us/en/docs/mpi-library/developer-guide-linux/2021-11/overview.html
https://www.intel.com/content/www/us/en/docs/mpi-library/developer-guide-linux/2021-11/overview.html
https://www.intel.com/content/www/us/en/docs/mpi-library/developer-guide-linux/2021-11/overview.html
https://www.intel.com/content/www/us/en/docs/mpi-library/developer-guide-linux/2021-11/overview.html
https://www.intel.com/content/www/us/en/docs/mpi-library/developer-guide-linux/2021-11/overview.html

Linaro Forge

80
Confidential | For Training Purposes Only

81

• Linaro DDT
• マルチスレッド、並列アプリケーションに対応した C/C++, Fortranデバッガー

• Linaro MAP
• ハイパフォーマンスなマルチスレッド/マルチプロセス向けプロファイラ

Linaro Forge

82

•プロセス制御の状況

•プロセスグループ

•ファイルや関数の検索

•ファイルと関数の一覧

•ソースコードビュー

•プロセス/スレッドの
変数やスタック

Linaro DDT

83

•多次元配列の値を視覚化して表示します。

Linaro DDT

84

•クラスタ向けの性能解析ツールで、MPI, マルチスレッド環境に対して様々な機能を提供します。

•実行に掛かった時間をソースコードレベルで確認、どの処理がボトルネックとなっているの確認で
きます。

Linaro MAP

85

• X 転送を有効にしてログインノードにログイン

• -g などのデバッグオプションを付けてビルド

•インタラクティブジョブを投入。

• forge その他のモジュールのロードと forge の起動

Linaro Forge 利用例

module load intel intel-mpi

mpiifx –g –O3 slow.f90

$ qrsh <qrsh のオプション>

$ cd <work directory>

$ module load intel intel-mpi forge

$ forge

86

• Linaro MAPを選択

• Profile を選択

Linaro Forge 利用例

87

•バイナリの選択

• MPI のオプションの設定

•実行

Linaro Forge 利用例

88

Linaro Forge 利用例

89

• Linaro Forge User Guide
/apps/t4/rhel9/isv/forge/23.1.2/doc/userguide-forge.pdf

参考文献

Hands On

90

	スライド 1: 並列化プログラミング
	スライド 2: Agenda
	スライド 3: TSUBAME4.0 概要
	スライド 4: TSUBAME4.0
	スライド 5: TSUBAME4.0 の構成
	スライド 6: TSUBAME4.0 の構成
	スライド 7: TSUBAME4.0 の構成
	スライド 8: 並列化の基礎
	スライド 9: TSUBAME4.0 における並列性
	スライド 10: 並列化
	スライド 11: 性能評価指標
	スライド 12: アムダールの法則
	スライド 13: アムダールの法則
	スライド 14: ベクトル化
	スライド 15: 共有メモリ型並列化
	スライド 16: 分散メモリ型並列化
	スライド 17: Intel コンパイラと最適化
	スライド 18: Intel コンパイラの使い方: 環境設定
	スライド 19: Intel コンパイラの使い方 (C)
	スライド 20: Intel コンパイラの使い方 (C ++)
	スライド 21: Intel コンパイラの使い方 (Fortran)
	スライド 22: 一般的な最適化オプション
	スライド 23: プロセッサ固有の最適化オプション
	スライド 24: TSUBAME4.0 で推奨される最適化オプション
	スライド 25: プロシージャ間最適化オプション
	スライド 26: 浮動小数点数値演算の制御
	スライド 27: メモリモデル
	スライド 28: デバッグ情報、最適化レポートオプション
	スライド 29: 最適化レポート例
	スライド 30: 補足: AMD Optimizing C/C++ and Fortran Compilers (AOCC)
	スライド 31: 参考資料
	スライド 32: OpenMP
	スライド 33: OpenMPとは
	スライド 34: OpenMPとは
	スライド 35: Fork-join model
	スライド 36: OpenMP のビルドと実行
	スライド 37: Hello World
	スライド 38: OpenMP 指示文の書式
	スライド 39: Parallel 指示文
	スライド 40: for/do 指示文
	スライド 41: for/do 指示文のオプション (節)
	スライド 42: for/do 指示文: データスコープ
	スライド 43: for/do 指示文: データスコープ
	スライド 44: for/do 指示文: reduction
	スライド 45: for/do 指示文: reduction
	スライド 46: for/do 指示文: reduction
	スライド 47: for/do 指示文: スケジューリング
	スライド 48: for/do 指示文: スケジューリング
	スライド 49: for/do 指示文: スケジューリング
	スライド 50: そのほかの主な指示文
	スライド 51: OpenMP の主な環境変数
	スライド 52: OpenMP の主なランタイム・ライブラリルーチン
	スライド 53: 並列化できないループ
	スライド 54: 後方依存性
	スライド 55: 前方依存性
	スライド 56: 間接参照のあるループ
	スライド 57: 縮約演算
	スライド 58: 参考資料
	スライド 59: MPI
	スライド 60: MPI とは
	スライド 61: MPI のビルド
	スライド 62: Hello World
	スライド 63: MPI の用語
	スライド 64: MPI の関数
	スライド 65: MPI 関数: システム関数
	スライド 66: MPI 関数: システム関数
	スライド 67: 1 対 1 通信
	スライド 68: MPI 関数: 1 対 1 通信関数
	スライド 69: MPI 関数: 1 対 1 通信関数　プログラム例
	スライド 70: ブロッキング通信とノンブロッキング通信
	スライド 71: ブロッキング通信とノンブロッキング通信
	スライド 72: ブロッキング通信とノンブロッキング通信
	スライド 73: ノンブロッキング通信
	スライド 74: MPI 関数: 集団通信
	スライド 75: 集団通信例: MPI_Reduce
	スライド 76: MPI_REDUCE
	スライド 77: ハイブリッド MPI/OpenMP 並列化
	スライド 78: ハイブリッド MPI/OpenMP 並列化　プログラム例
	スライド 79: 参考資料
	スライド 80: Linaro Forge
	スライド 81: Linaro Forge
	スライド 82: Linaro DDT
	スライド 83: Linaro DDT
	スライド 84: Linaro MAP
	スライド 85: Linaro Forge 利用例
	スライド 86: Linaro Forge 利用例
	スライド 87: Linaro Forge 利用例
	スライド 88: Linaro Forge 利用例
	スライド 89: 参考文献
	スライド 90: Hands On

