Discovery Studio 利用の手 引き

TSUBAME Computing Services, Center for Information Infrastructure

2025-01-31

Table of contents

1. はじめに	3
1.1. 利用できるバージョン	3
1.2. 利用環境及び入手方法	3
1.3. 概要	3
1.4. マニュアル	5
2. 使用方法	6
2.1. Discovery Studio Clientの起動	б
2.2. サーバーへの接続設定	7
2.3. ライセンス使用状況の確認	7
3. Visualizerの基本情報	9
3.1. 構成	9
3.2. 設定の確認及び変更	9
3.3. Toolbarsの設定及び確認	12
3.4. 作業フォルダーの設定	14
4. モデル構築例	15
4.1. 低分子の構築	15
4.2. ペプチドの構築	20
4.3. データベースからの構造の取り込み	22
5. プロトコル実行例	25
5.1. タンパク質の構造最適化計算	25
5.2. 計算結果の確認	28

1. はじめに

本書は、Discovery StudioをTSUBAME4.0で利用する方法について説明しています。 また、TSUBAME4.0を利用するにあたっては、TSUBAME4.0利 用の手引きもご覧下さい。 利用環境や注意事項などが詳細に記述されております。

ダッソー・システムズ・バイオビア株式会社ではDiscovery Studioに関するWebページを公開しています。 下記のアドレスを参照してください。

BIOVIA Discovery Studio

Discovery Studioは有償アプリケーションのため、学内利用者のみ使用可能です。 Discovery Studioの利用には別途アプリケーション利用料が必要になります。 詳細は利用料の概略のアプリケーション (TSUBAME4.0 で一部有償化)をご覧下さい。
商用アプリケーションの学内利用に際し、ライセンスの利用制限を設けております。ライセンスを占有しないようご協力ください。 ライセンスの占有・長時間利用を確認した場合、予告なくライセンス利用を停止することがあります。 詳細についてはライセンスの制限内のライセンス数の制限についてをご参照ください。

1.1. 利用できるバージョン

TSUBAME4.0で利用可能な最新バージョンについてはTSUBAME計算サービスWebサイトの サポートされているアプリケーション ページをご確認下 さい。

研究に支障がない限り、バグ修正の入っている最新版をご利用下さい。

1.2. 利用環境及び入手方法

Discovery Studioはクライアント-サーバー方式のソフトウェアです。本学ではWindows版のDiscovery Studioを学内配布しております。ご利用を希望される場合は、所定の手続きに従って申請を行い、インストーラーと共に提供される手順書に従ってインストールを行ってください。

1.3. 概要

Discovery Studioはライフサイエンス研究向けのモデリング・シミュレーション環境です。データの取得から分析までを担う一連の製品で構成され ています。 共通の基盤技術とデータモデルを使用することで、研究で使用されるあらゆる方法論をシームレスに組み合わせて、さまざまな計算上 の問題を解決することができます。

Discovery Studioに含まれるモジュールは以下の通りです。

DS Modeling Visualizer Pro

- ・3次元構造、ファイルの可視化、3次元構造においての原子・分子の編集が可能
- シーケンスウィンドウでマルチプルアライメントを表示
- ・シーケンスウィンドウと3次元構造ウィンドウが相互に反映

DS Biopolymer

- ・ポリペプチドのシーケンスをウィザードから入力(選択)することで、ペプチド構築、編集が可能
- ・タンパク質やリガンドなどを同一ウィンドウ、あるいは別々のウィンドウで同時に表示可能。 タンパク質等の構造エラーを自動的に修正

DS CHARMm(分子力学・動力学計算モジュール)

・低分子から生体高分子に最適化された力場パラメーターを備えており、豊富な実績を持つ、 高度に認められ広く使われるシミュレーションパッ ケージ

DS Analysis

・DS CHARMmモジュールを使用して、計算した結果の解析及びアニメーション化

DS MODELER

- ・自動的にタンパク質をホモロジーモデリング
- ・ウィザードの使用で簡単にループ修正
- ・シーケンスアライメント(2D、3D)が実行可能
- ・拘束定義(Cis-prolines、disulphide bonds)、 アライメントの作成(シーケンスのidentity/similarity値を表示)

DS Protein Similarity Search

- ・タンパク質シーケンスのホモロジーを識別
- ・Web、ローカルのデータベースより検索 BLAST、gapped-BLAST、PSI-BLAST 、 ソートテーブル、ヒットテーブル、アラインシーケンスを自動的に作成

DS CFF

・生体高分子及び低分子のためのCHARMmの力場オプション

DS Delphi

- ・Poisson-Boltzmann関数を使用した静電荷及び溶媒和計算
- ・3次元静電荷エネルギー表示(グリッド、体積、固体)、 Delphiでの静電荷ポテンシャルに基づいて色で表示

DS Protein Families

- ・進化系統樹を用いてタンパク質の機能に重要な残基を解析
- ・マルチプルシーケンスアライメント
- ・Aline123法(ClustalWを改良)
- ・Pre-alignedプロファイルの選択可
- ・シーケンスの進化関係、conservationパターンを元にファミリータンパク質を解析。 側鎖距離と露出残基によって残基をクラスター化

DS Protein Health

- ・Profiles-3Dを使用して、タンパク質構造を評価
- ・タンパク質全体、あるいは残基単位での計算が可能

DS LigandFit

- ・タンパク質 リガンドの親和性評価を高速/高精度に実行
- ・Cavity検索による活性部位探索
- ・高速モンテカルロによるコンフォメーション空間の検索
- ・エネルギーグリッド計算を用いたドッキング配置/配座の高速な評価

DS LigScore

・独自スコアリング関数LigScore2を含む各種スコアリング関数で タンパク リガンドの結合親和性をスコア評価

DS Ludi

・タンパク構造既知、ターゲットリガンド構造未知の場合のリガンドのde novoデザイン。 タンパク質の結合部位に立体的化学的に適合

- ・リガンド タンパク質複合体のスコアリング
- ・結合親和性を増加させるような既知リガンド改変の示唆

1.4. マニュアル

Windows版 Discovery Studioにヘルプがあります。

Discovery Studio起動後にメニューバーの「Help」→「Help Topics」を選択するとブラウザが起動し、ヘルプ画面が表示されます。

Window	Help
I	Help Topics
	Getting Started

または、マウスポインタを項目上に置くと、その項目の簡単な説明が表示されます。

その説明の下部の「Click here for help」をクリックするとその項目に関するヘルプ画面が表示されます。

		_		
Run Simulations	?			
These tools work (minimize a set of : <u>Minimize Ligands</u> .	on a single molecule or complex. To small molecules independently, use			
Tools				
Calculate Energy.				
🔆 🖓 Clean Geome	Galculate Energy			
Minimization				
Dynamics	Calculates single point energy and es entropy using CHARMm. Requires a	stin mol	nates ecule in the	
Use Standard Dyr equilibrate and pe run, which can be NAMD.	current window. To process multiple specify specific parameters, open the protocol.	mol e Er	ecules or hergy	
Standard Dynami		_		
Dynamics (Produc	stion)			
- · · · · · · · · · · · · · · · · · · ·	a			

ダイアログの「Help」をクリックすることでもヘルプ画面を表示することができます。

Calculate Energy	
Daramotor Namo	Paramotor Value
	lagi:lagi
Implicit Solvent Model	None
Nonbond List Radius	14.0
Electrostatics	Automatic
Estimate Entropy	False
Show Parameter Help	
Run Options V Cancel	<u>H</u> elp

2. 使用方法

2.1. Discovery Studio Clientの起動

[yourPC]\$:ログインノードへの接続元環境

WindowsにインストールしたDiscovery Studio Clientを起動します。

Windows 10 の場合

「スタート」 → 「BIOVIA」 → 「Discovery Studio <バージョン名>」をクリックします。

*起動画面は2017R2のものです。

終了する場合は、「File」→「Exit」を選択してください。

2.2. サーバーへの接続設定

計算を行うためには、計算を実行するサーバの設定が必要になります。 設定は、ツールバーから「File」→「Change Server」を選択し、次のダイ アログ上で行います。

- TSUBAMEのサーバーを利用する場合
 Discovery Studioの計算をTSUBAMEで実行することはできません。
- ・PC上で計算を行う場合
 Server name欄に「localhost:9943」を入力し、OKボタンを押します。 Discovery Studio Server インストール手順においてHTTPS PORTに9943以
 外の数値を設定している場合は、 9943の部分を差し替えてください。

設定後、次の画像のように、画面右下に設定した内容が表示されていれば、正しく設定されています。

2.3. ライセンス使用状況の確認

TSUBAMEにログインした状態で、次のコマンドにより、ライセンス利用状況を確認できます。

[login]\$ lmutil lmstat -S msi -c *****@kvm5,*****@kvm6,*****@ldap2

Discovery Studioを起動しているWindowsからも確認することができます。

スタートメニューから すべてのプログラム > BIOVIA > Licensing > License Administrator X.X.X > Utilities (FLEXIm LMTOOLs) を実行します。

[Service/License File] タブを開き、 [Configulation using License File] を選択します。

MSI_LICENSE_FILE と表示されていることを確認します。

ervice/License File System Settings Utilities Stop/Reread S Normally the acense file is already specified. To override it set it License File	witch Report Log Server Status Server Diags Borrowing here .
License File	
G Conferen	
te compar	ation using License File
C Don figur	ation using Services
A state	Browse
	JOLS ignores license file path environment variables

[Server Status] タブを開き、[Perform Status Enqurity] をクリックすると、ライセンスの利用状況が表示されます。

特定のライセンスのみを表示したい場合は、[Individual Feature] に表示したいライセンス名を入力して [Perform Status Enqurity] を実行します。

3. Visualizerの基本情報

3.1. 構成

Discovery Studioの操作はすべてVisualizer Discovery Studio Client 上で行います。

詳細はヘルプの以下のページをご覧ください。

Working with Discovery Studio > Working with the client > About the client

3.2. 設定の確認及び変更

[Edit] → [Preferences] をクリックします。

Preferencesウィンドウが立ち上がります。 「Molecule Window」→「Graphics」を選択します。 ここでは、分子の表示形式や背景色の設定を行い ます。

Preferences	P	And a set of the	
 General Files Explorer Molecule Window Default Layouts Graphics Data Table Display Styles Lighting Materials 	A E	Molecule Window Note: These preferences change the g To change the settings for your currer Projection Orthographic Perspective 20.00*	lobal settings for the application. nt window use the Display Style dialog. Quality <u>Low</u> <u>M</u> edium <u>M</u> edium <u>High</u>
 > Stereo > Import Export Sketch and Clean Query Tools > Dreiding Minimize > Sequence Window > Annotation Window > Charts > Protocols Text Window > Validate Protein Struct 		Background Color, Image	Line width: 1.60 🖨 Rendering on move Simplified Fast Fast Full <u>Reset Help</u>
		(OK Cancel <u>A</u> pply

「Protocols」では、プロトコル実行のための設定を行います。 例えば、「Use default path to save a job」のチェックボックスを外すと、 プロトコ ル実行時にフォルダー名や保存場所を変更できます。 チェックボックスを外さない場合、 デフォルトのフォルダーに計算結果が自動的に保存され ます。

Preferences	
Preferences	Protocols Number of jobs to display 32,000 Maximum size for automatically downloading results (MB)

3.3. Toolbarsの設定及び確認

Toolbarsの設定・確認を行います。 「View」→「Toolbars」を選択すると、さらにメニューが表示されます。 表示されたメニューの中でチェック が入っているものが現在表示されているものです。 表示・非表示はそれぞれの項目をクリックすることで行えます。

Viev	w Chemistry	Structure	Sequence	Ch	hart :	Scripts	Tools	Window	H
	Display Style	·	Ctrl+D	nter	ractio	ns Ph	armaco	phores	Sma
	Color				Display	/ Style	-	Non-bond	l Inter
1	Transform		•)s w	/elcome	×	😵 1aq1	×	
5	Spin		•						
V Z	Storyboard		•						
, ,	Clipping Plane	es							
1	Stereo								
6 0.0	Tile Molecule	s in View	Ctrl+L						
E.	Full Screen		F11						
c	Visibility		+						
	Graphics		Ctrl+G						
	Hierarchy		Ctrl+H						
	Data Table		Ctrl+T						
	Explorers		•						
-	Docks		•						
	Toolbars		•		Alignr	ment			
	Tool Panels		•		Anima	ation			
ng Ato	ım Pair				Atom	Colors			
ecular	Dynamics				Atom	Display	y		
ree En	ergy from Steeri			Chem	nistry				
					Dend	rogram			
hergy	(DFT) (QM-MM)			✓	Searc	ch Produ	uct Featu	ires	
1 (QM-	·MM)		Ŧ		Navig	jation			1
aints			2		Nucle	ic Acid	Structur	e Display	
efield			2		Prote	in Struc	cture Dis	play	
ectory			2 8		Proto	cols			
ctrost	atics		2 🔻 🚺 Mo		Query	y			į.
					Script	ting			
me	Saved	State	JS		Seque	ence			t
e Ene	rgy 📄 No	Suco	ess		Sketo	ching			5
ation	No	Suco	ess	\checkmark	Smar	t Tools			D
					Stand	dard			
				✓	Statu	is Bar			

3.4. 作業フォルダーの設定

計算結果は、初期設定では My Document > Discovery Studio > Results以下に作成されます。 保存先フォルダーを変更したい場合は、Files Explorer で変更を行います。

例えば、My Documentsフォルダーに新規フォルダー「Sample」を作成する場合、 Files ExplorerのMy Documentsを選択して、右クリックします。 表示されるメニューのNew Folderを選択します。

My Documentsフォルダーを展開し、Sampleフォルダーを選択し、右クリックします。 表示されるメニューのSet as Defaultを選択します。 これ で、Discovery Studioで実行した結果の保存先がSampleフォルダーになります。

デフォルトのフォルダーに設定されるとフォルダーアイコンの背景色が青になります。

4. モデル構築例

4.1. 低分子の構築

Discorci y Stadio File Edit View Chemistry Structure Sequence Chart Scripts New ₽ ÷, Molecule Window Þ Open... Ctrl+0 ATG GTA Protein Sequence Window Open URL... 9 ATG GTA Nucleotide Sequence Window 🟂 Discovery Studio Client <u>File Edit View Chemistry Structure Sequence Chart Scripts Tools Window Help</u> Macromolecules Simulation Receptor-Ligand Interactions Pharmacophores Small Molecules X-ray My Tools Search product features Q 🔩 New 👻 📄 🤮 🔚 🔦 🥐 💢 % 📅 🗊 🖗 🔣 Display Style... 💌 Tools 🗵 🛛 Files 🖂 🖡 😵 Molecule 🔀 P Run Simulations These tools work on a single molecule or complex. To minimize a set of small molecules independently, use <u>Minimize Ligands</u>. Tools **Calculate** Energy 🔲 Clean Geometry Minimization Dynamics Use Standard Dynamics Cascade to minimize, equilibrate and perform an initial dynamics production run, which can be continued using either CHARMm or NAMD. Standard Dynamics Cascade Dynamics (Production) Dynamics (NAMD). Advanced Dynamics (Heating or Cooling) Dynamics (Equilibration). Solvation Steered Molecular Dynamics Create Pulling Atom Pai Steered Molecular Dynamics. Calculate Free Energy from Steering Forces. QM Calculate Energy (DFT)... Calculate Energy (QM-MM). Minimization (QM-MM). Setup Constraints Change Forcefield Analyze Trajectory Calculate Electrostatics A Jobs 🗵 ņ * Protocol Name Elapsed Time Start Date Server Location Saved Status Details Calculate Energy 📃 No Success -1816.61966 kca 0:00:13 月 10 23 17:08:0 localhost:9943 Minimization No Success -20943.30624 kc 0:00:39 金 10 20 17:35:3 login0:9943 Server:localhost:9943 v17.2.0.16349

必要なツールがToolbarsに表示されていない場合は、「View」→「Toolbars」の一覧から選択します。 本節では次のツールを使用します。

メニューバーの「File」→「New」→「Molecule Window」を選択し、新規にMolecule Windowを開きます。

• View Tools

Select 🥂 : 原子や結合等を選択します。選択した部分は黄色で表示されます。

Sketching Tools

Sketch 🥖 : 原子を一つ一つ組み上げて分子を構築します。
Chain < : 鎖状構造を持つ分子の構築に利用します。
Ring 🧭 : 環状構造をもつ分子の構築に利用します。
Chemistry tools
Shows/Add Hydrogens :水素原子を付加します。
Single Bond Louble Bond Aromatic Bond II 、Triple Bond III:結合様式を指定します。
Periodic Table 🔚 : 周期表の中から付加 置換する原子を選択します。
Clean Geometry 👬 : 構造をある程度整った形に整形します。

4.1.1. ベンゼンの構築

例として、ベンゼンの構築、ベンゼンから他分子への修正について、説明します。 Ringアイコンをクリックすると、環構造の描画モードになります。

この状態でMolecule Window上で一度左クリックします。 炭素6原子からなる環構造が作成されます。

デフォルトでは単結合となっていますので、結合様式を変更します。

Select そ を利用して全ての炭素原子を選択します。 Ctrl + A でもよいです

Aromatic Bondをクリックします。

次に水素原子を付加します。 Add Hydrogensボタンをクリックします。 すると以下のように水素原子が炭素原子に付加します。

以上でベンゼンの構築は終了です。

4.1.2. ベンゼン誘導体のモデル構築

作成したベンゼンをベースに、 他の分子への変更方法について、説明します。 本節では、フェノール(C6H5OH)を構築します。

水素原子を1個選択します。

Periodic Table をクリックします。 するとChange Elementダイアログが表示されるので、「O」を選択しOKをクリックします。

水素原子が酸素原子に置き換わります。

Add Hydrogensボタンをクリックすると、置換した酸素原子に水素原子が付加されます。 以上でフェノールが作成されました。

4.2. ペプチドの構築

メニューバーの「File」→「New」→「Molecule Window」を選択し、新規にMolecule Windowを開きます。 「Macromolecules」Tool Setを選択し、「Tools Explorer」の「Build and Edit Protein」をクリックして展開します。

File	Edit	View	Che	emistry	Structure	Sequ	Jence
i H	Ht H	00	6			÷	1
	0	?., <i>C</i>	T	Γ			
Mad	cromo	lecule	es S	imulatior	n Recepto	or-Lia	sand In
*	New 🤜	· 📄 🤅	28	•	X × F	ĩ Ô	÷
Tools	: 🗙	Files	×			џ	😵 M
Build a	and Edit	t Nucle	ic Acid			2 🔺	
Build a	and Edit	t Protei	n			2	
Build	Action	Create	e/Grow	•			
Confo	ormation	n: Exter	nded 🔹	-			
Apply	Confo	rmation					
Choo	se An	nino A	cid				
Ala	Arg	Asn	Asp	Cys			
Gln	Glu	Gly	His	Ile			
Leu	Lys	Met	Phe	Pro			
Ser	Thr	Trp	Tyr	Val			
Mse	Cse	Orn	Ptr	Sep			
Тро	Tys	Aib	Pca	Specify			
Modi	fy Str	ucture					
L/D (Convers	sion (Dap Te	rmini			
Adva	nced						
Defin	e Amin	o Acid.					
Creat	te Struc	ture fro	om Sec	luence		=	
Query	Online	Databa	ses			2	
D 1							

Build Actionが Create/Grow、Conformation がExtendedとなっていることを確認します。 次にペプチドのシークエンスを入力します。入力には、 種類の方法があります。

・1残基単位で配列を追加する

Choose Amino Acidの3文字表記のアミノ酸をクリックするとその残基が追加されます。

・直接ペプチドシークエンスを入力する

Choose Amino AcidのSpecify をクリックすると以下の画面になります。

Enter an Amino Acid Sequence	— ×	
Alanine - A	-	
Specify Sequence		h
One Letter Code	🔘 <u>T</u> hree Letter Name	
[
	OK Cancel <u>H</u> elp	

プルダウンリストから残基を選択するか、テキストボックスに直接入力することでまとまった配列を一括で構築することができます。 詳細はHelpをご覧ください。 Macromolecules tools > Macromolecules tool panels > Build and Edit Protein tools > How to use the Build and Edit Protein tools

4.3. データベースからの構造の取り込み

Discovery Studioを起動するPCがインターネットに接続できる場合、RCSB PDB やNCBIにより無償で公開されているタンパク質や核酸の構造を読み 込むことができます。

「File」→「Open URL」を選択し、Open URLウィンドウを起動します。

「ID」に取得したいタンパク質または核酸のIDを、「Site」に取得先を指定してOpenをクリックすると、その構造がMolecule Windowsに表示され ます。

Open URL								×			
http://filesrcsb.org/dov	vnload/1cri	npdb						-			
-Generate URL using -											
ID: 1cm				S	ite: Defa	ult PDB S	tructure	s 🔻			
			_								
				Open		Cancel		<u>H</u> elp			
🛃 Discovery Studio Client											×
<u>File E</u> dit <u>V</u> iew <u>C</u> hemistry <u>S</u> tru	cture Seguen	ce Ch <u>a</u> rt Sc <u>r</u> ip	ts <u>T</u> ools	<u>W</u> indow	<u>H</u> elp						
H H H H H	🔤 💓 🖡] & ∲ 💲 🟠	🗙 🔀 🗋	È.							
🔊 🥒 🔍 🧭 T 🎩 💷											
Macromolecules Simulation Re	eceptor-Ligan	d Interactions	Pharmaco	phores Sr	nall Molecul	les X-ray M	y Tools		Search pro	duct features	Q
🔩 New 👻 📄 🤮 🔒 🦘 🔶 🗙	≈ 🗄 🗋 🧕	🕴 🛛 🌉 Display Styl		Non-bond In	iteractions 🔻						
Tools 🗵 🛛 📕	😵 1crn 🔀										Ð
Build and Edit Nucleic Acid ?	⊿ ⊽ ∰ <c< td=""><td>ell></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></c<>	ell>									
Build and Edit Protein ?	4 👿 🔥	1CRN									
Query Online Databases ?	4 🔽	Geo A									
Protein Report ? Report on Structure		V V THRI									
Protein Report	⊳	🔽 🏒 CYS3	=								
To visually inspect the properties of a	⊳	V KYS4									
protein structure generate a <u>Hydrophobicity Plot</u> or a <u>Ramachandran</u>		PRO5									
Plot.		V 1LE7									
Prepare Protein ?	⊳	VAL8									
Search Sequences by Similarity ?	⊳	🔽 🏄 ALA9	<				1				
Align Sequences and Structures ?		ARG10	×				/				
Analyze Protein Conservation Pattern ?		ASN12)			
Superimpose Proteins ?	⊳	PHE13						/			
Create Homology Models ?	⊳	ASN14									
Search Side-Chain Rotamers ?	⊳	VAL15									
Minimize and Refine Protein ?		ARG17					\checkmark				
Model Antibody ?	Þ	V 16018									
Dock and Analyze Protein Complexes ?	⊳	🔽 🏄 PRO19									
Predict Protein Aggregation 2		GLY20									
						AV					
Analyze Transmembrane Proteins ?	Name	ID Visible	Color	Parent	Molecule	FullName	Туре	PDB Name	Insertion Code	Hydrophobic	ity 🔺
	1 THR1	1 Ves		A	10RN	A:Thr1	Threonine	THR		-0.7	
	2 THR2	2 Ves		A	1CRN	A:Thr2	Threonine	THR		-0.7	
	3 CYS3	3 Ves		A	1CRN 1CRN	A:Cys3 A:Cys4	Cysteine	CYS		2.5	
	5 PR05	+ vres 5 Vres		A	10RN	A:Pro5	Proline	PRO		-1.6	
											•
	Molecule / (Jell / AminoAcidCl	nam /\ Ami	noAcid / A	tom / Bond	Group					
									Server:localhost:994	43 v17.2.0.163	349

構造はリボン表示されます。 表示形式を変更したい場合は、Molecule Windowsの黒い部分で右クリックし、Display Styleを選択します。 または

ツールバーの 🔝 Display Style... をクリック

Display Styleウィンドウが開きます。

Proteinタブを開き、Display styleをSolid ribbonからOffに変更します。

Atomタブを開き、Lineを選択し、Applyをクリックします。

構造がライン表示に変更されます。

MacromoleculesのProtein Reportをクリックすると、その構造に関する情報が表示されます。

🖻 1crn Protein Report 🔀 **-** -**Protein Report for 1crn Basic Information for Molecule 1CRN** Cell Space Group: 4 (P21 B-Unique Choice: 1) Parameters: 40.96 18.65 22.52 90.0 90.8 90.0 Crystallographic Resolution: 1.50 angstroms Molecular Weight of Protein: 4730.52 Amino Acid Chain Names: A Number of Amino Acids: 46 Experimental pH: not reported Amino Acid Sequence from Available Structure Chain A TICCPSIVAR SNENVCRLPG TPEAICATYT GCIIIPGATC PGDY Comparison of actual sequence versus PDB SEQRES records No missing residues found within chain A **Biomolecule Generation** THE AUTHOR PROVIDED AND/OR PROGRAM GENERATED ASSEMBLY INFORMATION FOR THE STRUCTUR IN THIS ENTRY. THE REMARK MAY ALSO PROVIDE INFORMATIC ON BURIED SURFACE AREA. To generate the biomolecule(s), use Structure/Superimpose/Apply Transformation Matrix: BIOMOLECULE: 1

Apply matrix BIOMT_1 to chain(s): A

データベースから取得した構造はX線結晶構造解析により取得された構造であり、水素は付加していません。 また、不純物が含まれている場合があ ります。 そのため、計算を行う前に、Add Hydrogenで水素を付加したり、不純物を取り除いたりする処理が必要です。

5. プロトコル実行例

5.1. タンパク質の構造最適化計算

この節では、RCSB PDBから取得した1crnの構造最適化を行います。 まず、1crnを開きます。

Display StyleをLineに変更します

Add hydrogen ボタンをクリックして、水素を付加します。

60	1crn 🔀											₽
		cell> 1CRN © A & X & X & X & X & X & X & X & X & X &	THR1 THR2 CYS3 CYS4 PRO5 SER6 ILE7 VAL8 ALA9 ARG10 SER11 ASN12 PHE13 ASN14 VAL15 CYS16 ARG17 LEU18 PRO19 GLY20			Y						
							A V					
	Name	ID	Visible	Col	or Parent	Molecule	FullName	Туре	PDB Name	Insertion Code	Hydrophobicity	-
1	THR1	1	🔽 Yes		A	1CRN	A:Thr1	Threonine	THR		-0.7	
-	TUDA	0				1000	A 77. 0	T '	TUD		0.7	

		Name	ID	Visible	Color	Parent	Molecule	FullName	Туре	PDB Name	Insertion Code	Hydrophobicity	-
	1	THR1	1	🔽 Yes		A	10RN	A:Thr1	Threonine	THR		-0.7	
	2	THR2	2	🔽 Yes		A	1CRN	A:Thr2	Threonine	THR		-0.7	
	3	CYS3	3	🔽 Yes		A	10RN	A:Cys3	Cysteine	CYS		2.5	
	4	CYS4	4	🔽 Yes		A	1CRN	A:Cys4	Cysteine	CYS		2.5	
	5	PRO5	5	🔽 Yes		A	1CRN	A:Pro5	Proline	PRO		-1.6	Ŧ
L													
7	Molecule / Cell / AminoAcidChain / AminoAcid / Atom / Bond / Group /												

次に力場と電荷のタイプを設定します。

「Simulation」Tool Setを選択し、「Tools」Explorerの「Change Forcefield」をクリックして展開します。

Forcefield 及びPartial Chargeを設定します。

この例では、Forcefield にCHARMmを、Partial ChargeにMomany-Roneを選択します。 選択したら、Apply Forcefieldをクリックして適用します。

Macromolecules Simulation	Red
🔩 New 🔻 📄 🤮 🔚 🔷 🤭	\times
Tools 🔀 🛛 Files 🗵	₽
Run Simulations	2
Setup Constraints	2
Change Forcefield	2
All Forcefields	
Forcefield: CHARMm 🔻	
Partial Charge: Momany-Rone 🔻	
Apply Forcefield	
charmm36 Forcefield	
Assign Forcefield	

次に、Tools ExplorerのRun Simulationsを展開し、Tools > Minimization をクリックし、Minimizationダイアログを開きます。

Macromolecules Simulation	Re
🍕 New 🔻 📄 🕵 🔚 🔝 🥐 🛛	X
Tools 🔀 🛛 Files 🗵	џ
Run Simulations ?	
These tools work on a single molecule or complex. To minimize a set of small molecules independently, use <u>Minimize Ligands</u> .	
Tools	
Calculate Energy	
Sean Geometry	
Dynamics	
Use Standard Dynamics Cascade to minimize, equilibrate and perform an	
Minimization	
Parameter Name	
Parameter Name	
Input Typed Molecule	
Minimization	
Implicit Solvent Model	
Nonbond List Radius	
Electrostatics	
Advanced	
Show Parameter Help	
	maal
	incer

各パラメーターの詳細は、Helpをご参照ください。

この例では、デフォルトのままRunをクリックします。計算が開始され、以下のウィンドウが表示されます。

Minimization	1	100	x
Minimizine: 1CRN			
Ba	ckground	Stop	<u>H</u> elp

進捗はJobs Explorerで確認できます。

計算が完了すると以下のように表示されますので、OKをクリックします。

5.2. 計算結果の確認

計算を実行している間、結果は、Set as defaultで指定したフォルダーに、"プロトコル名_年月日_時間" というフォルダー名で作成されます。 作成されたフォルダーのOutputフォルダーに計算結果ファイルが作成されます。

Minimization_2017_10_26_143713_457

⊿	🔁 Input
	😵 1CRN.dsv
	🔊 Protocol.pr_xml
⊿	🔁 Output
	Report
	😰 1CRN.mol2
	📄 charmm.log
	Output.log
	🔫 Report.htm
	 ViewResults.ds_pl

出力結果は、使用したプロトコルにより変わります。 この例では、下表に示すファイルが作成されます。

ファイル名	内容
charmm.log	CHARMMによる計算結果
1CRN.mol2	Minimizationによって得られた構造ファイル
Output.log	計算サーバからのコマンドとその返答の内容を保存したファイル エラー終了した場合、本ファイルを参照し、問題点を見出してください
Report.htm	計算結果を纏めたHTML形式のファイル

計算結果は、Jobs Explorerから呼び出すことも可能です。

J	obs 🔀				
Pro	otocol Name	Saved	Status	Details	Elapsed Time
4	Minimization	No	Success	-2260.22878 kca	0:00:57
	View Results				
	Minimized Molec	cule			
	CHARMm Log Fi	ile			
	<u>Report</u>		1		